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Abstract. Evolutionary Algorithms (EAs) are population-based ran-
domized optimizers often solving problems quite successfully. Here, the
focus is on the possible effects of changing the parent population size.
Therefore, new functions are presented where for a simple mutation-
based EA even a decrease of the population size by one leads from an
efficient optimization to an enormous running time with an overwhel-
ming probability. This is proven rigorously for all feasible population
sizes. In order to obtain these results, new methods for the analysis of
the EA are developed.

1 Introduction

Evolutionary Algorithms (EAs) are a broad class of general randomized search
heuristics. The probably best-known types of EAs are Genetic Algorithms and
Evolution Strategies. Their area of application is as huge as their variety and
they have been applied successfully in numerous situations. Here, we consider
the problem to maximize pseudo-Boolean functions fn : {0, 1}n → IR+

0 . We
remark that analysis in discrete search spaces differs substantially from that in
continuous ones.

With regard to populations, the problems how to choose its size and how to
find a method to preserve the diversity are well known. If the size of the popu-
lation or its diversity are too small, the EA is likely to stagnate in local optima.
On the other hand, the EA is likely to waste much time on the evaluation of
unnecessary elements, if the population or diversity are too large. Many ideas
have been presented to cope with the difficulty of the correct choice of these pa-
rameters and they all have shown their usefulness in experiments, e.g., niching
methods, multistarts, and many more. In order to understand the success of EAs,
theory often investigates the behavior of simple EAs on typical or constructed
problems. These artificial problems are often developed to illustrate particular
effects of EAs or one of their components at best. Our aim is to illustrate conve-
niently that the choice of the parent population size may be critical. Therefore,
we develop functions where even a decrease of the parent population size by
one leads from an efficient optimization with an overwhelming probability to an
enormous running time.

We estimate the efficiency of a randomized algorithm. Therefore, let TA,fn be
the random number of function evaluations until algorithm A first evaluates an
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optimal search point of fn. If the expected value of TA,fn is polynomially bounded
in the dimension of the search space n, we call A efficient on fn and inefficient,
if the expected value of TA,fn is at least exponentially bounded. Finally, we call
A totally inefficient on fn, if after exponential many steps the probability that
an optimal search point has been evaluated, remains exponentially small. In this
particular situation a polynomially bounded number of (parallel) (independent)
multistarts of A is inefficient. Moreover, we are interested in asymptotical results
with respect to n.

We investigate one of the best-known EAs. This is the so-called (µ+λ) EA
working with a parent population of size µ ≥ 1 and an offspring population of
size λ ≥ 1. Surprisingly, on many typical functions even the (1+1) EA is quite
efficient. Indeed, Jansen and De Jong (2002) considered the role of the offspring
population size. They presented functions where a decrease of this parameter
leads to enormous differences in the optimization time. Jansen and Wegener
(2001b) have shown something less strong for the role of the parent population
size. Witt (2003) improved this result.

We develop functions fn,d where the considered mutation-based (µ+1) EA
is totally inefficient, if the parent population has size µ ≤ d. However, if the
population has size µ > d, the EA is efficient. We introduce such functions for
all d ∈ {1, . . . , nc} and every constant c > 0. And we call d the threshold value of
the population size. In order to prove these results rigorously, we present simple
but powerful methods to analyze this EA. They extend the so-called method of
f-based partitions and help to upper bound the expected optimization time of
the (µ+1) EA on a particular function (see Wegener (2002)).

The paper begins in Section 2 with an introduction of the investigated steady-
state (µ+1) EA. Section 3 presents the desired extensions of the method of f -
based partitions and Section 4 exhibit our first results. These results handle only
the threshold value of the population size one and do not satisfy all the desired
properties but they illustrate some of the main effects which occur. We divide
the possible threshold values of the population size d into three domains. For
convenience, we consider them in an unnatural order later.
– The first domain encloses d ∈ {1, . . . , �n/(c1 log n)� − 1} for some constant

c1 > 0. These are investigated in Section 7.
– The second domain encloses d ∈ {�n/(c1 log n)�, . . . , �n/c2�} for some constant

c2 > 0. These are investigated in Section 5.
– And the third domain encloses d ∈ {�n/c2� + 1, . . . , nc} for every constant

c > 0. These are investigated in Section 6.
We finish with some conclusions.

2 The Steady-State (µ+1) EA

The considered mutation-based steady-state (µ+1) EA works with a natural
and weak method to preserve diversity. It just avoids duplicates of elements in
the population. This technique can be understood as a special niching method.
Moreover, in this case the population structure is not only a multiset but a set.
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(µ+1) EA
1. Choose µ different individuals xi ∈ {0, 1}n, 1 ≤ i ≤ µ, uniformly at random.

These individuals constitute the population P, i.e., P = {x1, . . . , xµ}.
2. Choose an individual x from the population P uniformly at random.

Create y by flipping each bit in x independently with probability 1/n.
3. If y �∈ P, i.e., y �= xi for all i, 1 ≤ i ≤ µ,

then let z ∈ P ∪ {y} be randomly chosen among those individuals with the
worst f -value and let the population be P ∪ {y} − {z}, goto 2.,

else let the population be P, goto 2.

Obviously, only populations of size µ ≤ 2n are possible. In Step 2, the parameter
1/n is the standard choice for mutations.

We remark that the theorems of Sections 5, 6 and 7 hold, if fitness-pro-
portional selection (xi, 1 ≤ i ≤ µ, is chosen with probability f(xi)/

∑µ
k=1 f(xk))

instead of uniform selection (xi, 1 ≤ i ≤ µ, is chosen with probability 1/µ) is
used in Step 2. Furthermore, it is irrelevant which of the elements with smallest
f -value is deleted in Step 3.

3 Methods for Upper Bounds on the Expected
Optimization Time for the (µ+1) EA

We present two extensions for the (µ+1) EA of the method of f -based partitions
(see Wegener (2002)). These extensions can easily be combined. At first, we recall
the original method of f -based partitions that is a simple proof technique which
helps to upper bound the expected running time of the (1+1) EA to optimize a
particular function.

Given A, B ⊆ {0, 1}n, A, B �= ∅, the relation A <f B holds, iff f(a) <
f(b) for all a ∈ A, b ∈ B and a pseudo-Boolean function f . Moreover, we call
(A1, . . . , Am; f) an f-based partition, iff A1, . . . , Am is a partition of {0, 1}n and
A1 <f · · · <f Am holds. Furthermore, Am merely consists of optimal elements
a, i.e., f(a) = max{f(b) | b ∈ {0, 1}n}. Finally, let p(a), a ∈ Ai, i < m, be
the probability that a mutation of a creates some b ∈ Ai+1 ∪ · · · ∪ Am and let
p(Ai) := min{p(a) | a ∈ Ai}, i < m, i.e., p(Ai) constitutes a lower bound on the
probability to leave Ai. Given an f -based partition (A1, . . . , Am; f), the expected
optimization time of the (1+1) EA is bounded above by

1 + p(A1)−1 + · · · + p(Am−1)−1 .

Our first extension of this method for the (µ+1) EA allows to disregard
areas of the search space at the expense of the population size. It is even not
necessary to know the areas, only their sizes. Therefore, let (A1, . . . , Am; f ; A)
be the variant (1) of f -based partitions where A1, . . . , Am is only a partition of
A ⊆ {0, 1}n but all other constraints still hold.

Theorem 1. Let A0 ⊂ {0, 1}n and (A1, . . . , Am; f ; {0, 1}n − A0) be given. The
expected optimization time of the (µ+1) EA, where µ ≥ |A0| + 1, is bounded
above by

µ
(
1 + p(A1)−1 + · · · + p(Am−1)−1) .
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Proof. The initialization evaluates µ different elements. There always exist at
least µ−|A0| ≥ 1 individuals in the population which do not belong to A0. These
are at worst all elements of A1 after the initialization. Once the (µ+1) EA has
left Ai, i < m, this area will never be reached again, i.e., at least one element
of the population belongs to Ai+1 ∪ · · · ∪ Am. Since the probability to select an
individual of the population that belongs to Ai, i < m, is lower bounded by
1/µ, the expected number of fitness evaluations is bounded by µp(Ai)−1 until
an element of Ai+1 ∪· · ·∪Am is created. At worst, this is an element of Ai+1. �
If A0 = ∅ and µ = 1, we have the original method for the (1+1) EA.

For the original method it is essential that Ai <f Ai+1, i < m, holds.
We weaken this condition at the expense of the population size. Therefore, let
(A1, . . . , Am; f ; b1, . . . , bm−1), bi ≥ i+1, be the variant (2) of f -based partitions
where A1, . . . , Am is a partition of {0, 1}n but it just holds Ai <f Abi

, i < m.
Furthermore, Am still merely consists of optimal elements.

Theorem 2. (A1, . . . , Am; f ; b1, . . . , bm−1) is given and let

vi :=
∑

1≤j<i, bj>i

|Aj | for all i < m .

The expected optimization time of the (µ+1) EA, where µ ≥ max{vj | j < m}+1,
is bounded above by

µ
(
1 + p(A1)−1 + · · · + p(Am−1)−1) .

Proof. After initialization, the population contains at worst only elements that
belong to A1. At most the elements of Aj where j < i and bj > i have an
f -value at least as large as the worst element of Ai, i < m, but belong to
A1 ∪· · ·∪Ai−1. By definition, these are at most vi elements. Therefore and since
µ ≥ max{vj | j < m} + 1 ≥ vi + 1, once the (µ+1) EA has reached Ai, i < m,
this area will never be given up again, i.e., at least one element of the population
belongs to Ai ∪ · · ·∪Am. The expected number of fitness evaluations is bounded
by µp(Ai)−1 until an element a ∈ Aj , i+1 ≤ j ≤ m, is created. Since a is either
optimal or it holds µ ≥ vj + 1, the element a will be inserted in the successive
population. �
If bi = i + 1, i < m, and µ = 1, we have the original method for the (1+1) EA
again.

4 First Results

Here, we only consider the threshold value of the population size one. The pre-
sented functions in this section do not satisfy all the desired properties. But we
make observations that help to identify functions in the following sections where
all these properties hold. To obtain these results for all threshold values of the
population size, the functions have to be modified in different manners.
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1n = a[n]

0n = a[0]

a[n−m]

level of all x where ‖x‖ = r

↗ increasing fitness↓ increasing fitness

Fig. 1. An illustration of POnePn.

Our example functions for the threshold value of the population size one
consist of one global optimum aglobal and one local optimum alocal which is
the second-best search point. We call alocal a peak, too. The Hamming distance
H(x, y) of two search points x and y equals the number of indices i where xi �= yi.
If H(x, y) = 1, we call x and y Hamming neighbors. A path (of length r) is a
sequence of search points a[0], . . . , a[r−1] where a[i] and a[i+1] are Hamming neig-
hbors and the elements are pairwise distinct. The two search points aglobal and
alocal are lying on a path a[0], . . . , a[n] (of length n + 1) that leads from the zero
string to the one string. It is aglobal := a[n] and alocal := a[n−�n/3�] and they
have (inevitably) Hamming distance �n/3�. The functions have the additional
property that with an overwhelming probability the path is first entered in front
of alocal. Therefore, during a typical run of the investigated EA alocal is crea-
ted before aglobal is reached. If the population consists only of the second-best
search point alocal, the probability is extremely small to produce aglobal, since
their Hamming distance is large. But if the population consists of at least one
more individual, these elements search forward on the path and find the global
optimum efficiently. We remark that the functions are influenced by the short
path functions of Jansen and Wegener (2001a).

To define the functions, let 0k denote the string of k zeros and |x| the number
of ones in x. To simplify the notation, let m := �n/3�. Now, we can give a
complete definition of POnePn (Path with One Peak) illustrated in Fig. 1.

POnePn(x) :=






n + i if x = 0n−i1i =: a[i], 0 ≤ i ≤ n and i �= n − m
2n − 1/2 if x = 0m1n−m =: a[n−m]
n − |x| otherwise

We begin our considerations with populations of size µ ≥ 2. The result is
proven in two different ways to demonstrate different interpretations of the local
optimum. The first proof uses Theorem 1 while the second one uses Theorem 2.

Theorem 3. The expected time until the (µ+1) EA, where µ ≥ 2, has optimized
POnePn is bounded above by O(µn2).

Proof. (using Theorem 1) Let A0 := {a[n−m]} and (A1, . . . , A2n−1;POnePn;
{0, 1}n − A0) be the variant (1) of f -based partitions where
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Ai :=






{a |POnePn(a) = i} if 1 ≤ i < n
{a[i−n]} if n ≤ i < 2n − m
{a[i−n+1]} if 2n − m ≤ i < 2n

.

Hence, for the element of A2n−m−1 a special 2-bit mutation creates the element
of A2n−m and for the elements of Ai, i < 2n − 1 and i �= 2n − m − 1, at least
one special 1-bit mutation creates an element of Ai+1. Therefore, it holds

p(Ai) ≥
{

(1/n2)(1 − 1/n)n−2 ≥ 1/(en2) if i = 2n − m − 1
(1/n)(1 − 1/n)n−1 ≥ 1/(en) otherwise

.

It holds µ ≥ |A0| + 1 = 2. Hence, an application of Theorem 1 leads to an
expected optimization time of at most µ

(
1 + en2 + (2n − 3)en

)
= O(µn2). �

Proof. (using Theorem 2) Let (A1, . . . , A2n;POnePn; b1, . . . , b2n−1) be the va-
riant (2) of f -based partitions where

Ai :=
{ {a |POnePn(a) = i} if 1 ≤ i < n

{a[i−n]} if n ≤ i ≤ 2n
, bi :=

{ 2n if i = 2n − m
i + 1 otherwise

.

Hence, it holds

vi =
{ |∅| = 0 if 1 ≤ i ≤ 2n − m

|A2n−m| = 1 otherwise

and p(Ai) ≥ 1/(en), 1 ≤ i < 2n, since for every element of Ai, i < 2n, at least
one special 1-bit mutation creates an element of Ai+1. It holds µ ≥ max{vj | j <
2n} + 1 = 2. Hence, by Theorem 2 the expected optimization time is bounded
above by µ

(
1 + (2n − 1)en

)
= O(µn2). �

Theorem 4. With a probability of 1−O(1/n) the (1+1) EA needs an exponen-
tial time 2Ω(n) to optimize POnePn. The expected time until the (1+1) EA has
optimized POnePn is bounded below by 2Ω(n).

Proof. By Chernoff bounds (see, e.g., Motwani and Raghavan (1995)), the pro-
bability is exponentially small that the initial element consists of more than
n − m − �n/7� ones. From then on, at most an element of {a | |a| ≤ n − m −
�n/7�}∪{a[0], . . . , a[n]} is accepted as population. Each a[i], i ≥ n−m, consists of
at least n−m ones. Hence, a mutation of an element of {a | |a| ≤ n−m−�n/7�}
has to change at least �n/7� bits to create a[i], i ≥ n − m. The probability for
such a mutation is bounded by (1/n)�n/7� = 2−Ω(n). Therefore, when first an ele-
ment of {a[n−m], . . . , a[n]} is produced this happens with an exponentially small
failure probability by a mutation of a[n−m−k], k ≥ 1. Exactly one k-bit mutation
of a[n−m−k] generates a[n−m] and one (k + l)-bit mutation produces a[n−m+l],
1 ≤ l ≤ m. The probability of the k-bit mutation equals (1/nk)(1−1/n)n−k =: q1
and of all the (k + l)-bit mutations together

∑m
l=1(1/nk+l)(1 − 1/n)n−k−l =: q2.

Since q2/q1 = O(1/n), the probability to create a[n−m] before a[i], i > n − m, is
altogether bounded by 1 − O(1/n). But if a[n−m] is the individual of the popu-
lation, just a special m-bit mutation generates the global optimum a[n]. This is
the only element that has an at least as large f -value as the local optimum. The
probability for such a mutation is (1/n)m(1 − 1/n)n−m = 2−Ω(n). �
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5 Medium Threshold Values of the Population Size

Now, we consider larger threshold values of the population size. Therefore, we
enlarge the peak. Of course, as a result, it is not a real peak at all but rather a
plateau. We play with the definition of POnePn and identify threshold values
of the population size that satisfy the desired properties.

Let POnePn,d, 1 ≤ d ≤ m := �n/3�, be the variant of POnePn where the
d search points a[n−m], . . . , a[n−m+d−1] have f -value 2n − 1/2. Thereby, these
elements form the new peak.

Similar to Theorem 3, the expected optimization for the (µ+1) EA on
POnePn,d, if µ ≥ d + 1, is bounded by O(µn2). In the proof using Theorem 2
it holds max{vj | j < 2n} + 1 = d + 1, since an appropriate choice of bi is now

bi :=
{ 2n if 2n − m ≤ i ≤ 2n − m + d − 1

i + 1 otherwise
.

We investigate the situation µ ≤ d and assume d ≤ �n/c2� for an appropriate
constant c2 > 0. Due to the proof of Theorem 4 the probability is exponentially
small that an element of the initial population consists of more than n − m −
�n/7� ones. Furthermore, q2/q1 = O(1/nd), since we have to compare (k + l)-bit
mutations, 0 ≤ l < d, with (k + d + l)-bit mutations, 0 ≤ l ≤ m − d. After
this, one element of {a[n−m], . . . , a[n−m+d−1]} and some elements of {a | |a| ≤
n − m − �n/7�} ∪ {a[0], . . . , a[n−m−1]} constitute the population. We claim that
it typically takes longer to reach the end of the path than to fill up the peak.
More precisely, we lower bound the failure probability that within �2eµn2/c2�
steps the population consists of some elements of {a[n−m], . . . , a[n−m+d−1]} only.
Since we suppress the chance to create a[n] during these steps, we also have to
lower bound the probability for this event. Both probabilities are exponentially
small. So, with a failure probability of max{O(1/nd), 2−Ω(n)} the (µ+1) EA,
where µ ≤ d, needs an exponential time to optimize POnePn,d.

Since it holds µ ≤ d, there exists an element a[n−m+l] �∈ P, 0 ≤ l < d, at least
until the population consists of elements of {a[n−m], . . . , a[n−m+d−1]} only. A
special 1-bit mutation of a correct individual of the population creates an element
a[n−m+l] �∈ P, 0 ≤ l < d. This element is also inserted into the population.
Therefore, we are in a similar situation as in an experiment where the success
probability is bounded by 1/(eµn) in each of �2eµn2/c2� trials. By Chernoff
bounds the probability is exponentially small that less than µ, µ ≤ d ≤ �n/c2�,
successes occur.

The probability is bounded above by 1/nj to produce a[l+j], j ≥ 0 and
0 ≤ l + j ≤ n, by a mutation of a where |a| ≤ l. At least j special bits have to
change for this event. Hence, let a[n−m+k] ∈ P, k ≥ 0, and a[n−m+k+j] �∈ P, for
all j ≥ 1. Since the population consists of elements of {a | |a| ≤ n−m−�n/7�}∪
{a[0], . . . , a[n−m+k]} and n−m−�n/7� ≤ n−m+k−(µ−1), there is at most one
individual in the population that consists of at most n−m+k− l, 0 ≤ l ≤ µ−1,
ones. So, the probability to create a[n−m+k+j] is bounded by

∑µ−1
l=0 1/(µnj+l) ≤

2/(µnj). At the beginning k = d − 1 holds at best. By Chernoff bounds the
probability is exponentially small to create a[n] within �2eµn2/c2� steps, if c2 is
large enough.
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Theorem 5. With a probability of 1 − 2−Ω(n) the (µ+1) EA, where µ ≤ d,
needs 2Ω(n) steps to optimize POnePn,d, �n/(c1 log n)� ≤ d ≤ �n/c2� for every
constant c1 > 0 and an appropriate constant c2 > 0. The expected optimization
time of the (µ+1) EA, where µ ≥ d + 1, is bounded above by O(µn2).

6 Large Threshold Values of the Population Size

We consider even larger threshold values of the population size. Therefore, we
enlarge the peak more and play more extensively with the definition of POnePn.
When we investigated the (µ+1) EA, µ ≤ d, on POnePn,d, we claimed that with
an overwhelming probability the peak is filled up before the end of the path is
reached. In order to retain this property now, we slow down the arrival at the
end of the path, since the peak is larger and thereby, it takes longer to fill it up.

To simplify the notation let m := �n/3� and s := �n/c2� where c2 is the
positive constant of the previous section. Let POnePn,d,c, s < d ≤ nc, for a
constant integer c ≥ 1, be the variant of POnePn where a[n−m+s+l], 0 ≤ l ≤
m−s−1 and l mod (c+1) �≡ −1, have f -value n−|a[n−m+s+l]|. Thus, the path
behind the peak consists of �(m−s)/(c+1)� gaps of size c and possibly one further
gap of smaller size. These gaps slow down the arrival at the global optimum. But
the path is not a real one at all. Furthermore, beside a[n−m], . . . , a[n−m+s−1]
the elements a(l), 0 < l ≤ d − s, have f -value 2n − 1/2. Thereby, all these
elements form the new peak. But before we describe the appearance of a(l),
1 ≤ l ≤ d − s, we remember the Gray Code. The (�-digit) Gray Code G�,
� ∈ IR, maps the integer x, 0 ≤ x ≤ 2� − 1, (bijective) to the binary space
{0, 1}�. But in contrast to Binary Code the values x and x + 1 always have
Hamming distance one, H(G�(x),G�(x + 1)) = 1 for all 0 ≤ x < 2� − 1. Similar
to Binary Code G�(0) = 0� holds. We define a(l). The element a(l), 1 ≤ l ≤ d−s,
equals gs−1 · · · g00m−s1n−m if G−1

s (gs−1 · · · g0) = l. It holds l ≤ nc ≤ 2s − 1,
if n is large enough. The mentioned properties of the Gray Code claim that
H(a(l), a(l+1)) = 1, 1 ≤ l < d − s, and H(a[n−m], a(1)) = 1.

We investigate the situation µ ≥ d+1. An application of Theorem 2 leads to
an expected optimization time of O(µnc+2). To show this, we define a sequence
of the elements of the path and the peak

S := (a[0], . . . , a[n−m−1], a(d−s), . . . , a(1), a[n−m], a[n−m+1], . . . , a[n−m+s−1],
a[n−m+s−1+(c+1)], . . . , a[n−m+s−1+�(m−s)/(c+1)�(c+1)], a[n])

=: (s0, . . . , sn−m+d+�(m−s)/(c+1)�) .
We choose the partition induced by the areas

Ai :=
{ {a |POnePn,d,c(a) = i} if 1 ≤ i < n

{si−n} if n ≤ i ≤ 2n − m + d + �(m − s)/(c + 1)�
and analogously to the previous section for an appropriate choice of the bi it holds
max{vj | j < 2n−m+d+�(m−s)/(c+1)�}+1 = d+1. Hence, for i = 2n−m−1
we consider the Hamming distance of si−n = a[n−m−1] and si+d−s−n = a[n−m]
and otherwise of the element of Ai and an appropriate element of Ai+1. So,

p(Ai) ≥
{

1/(en) if 1 ≤ i < 2n − m + d − 1
1/(enc+1) otherwise .
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Now, we investigate the situation µ ≤ d. Similar to the arguments that
led to Theorem 5, the probability is exponentially small that an element of
{a[n−m+s−1+k(c+1)] | 1 ≤ k ≤ �(m − s)/(c + 1)�} ∪ {a[n]} is created before
an element of the peak {a[n−m], . . . , a[n−m+s−1], a(1), . . . , a(d−s)}. Furthermore,
by Chernoff bounds the failure probability is exponentially small that after
�2eµnc+1� steps the population consists of elements with f -value 2n − 1/2 only.
Hence, let a[n−m+s−1+k(c+1)] ∈ P, k ≥ 1, and a[n−m+s−1+(k+j)(c+1)] �∈ P,
for all j ≥ 1. Since the Hamming distance of a(l), 1 ≤ l ≤ d − s, and
a[n−m+s−1+(k+j)(c+1)] is at least s, the probability is bounded by 2/(µnj(c+1))
to create a[n−m+s−1+(k+j)(c+1)]. By Chernoff bounds the probability is exponen-
tially small that a[n] is created within �2eµnc+1� steps.

Theorem 6. With a probability of 1 − 2−Ω(n) the (µ+1) EA, where µ ≤ d,
needs 2Ω(n) steps to optimize POnePn,d,c, �n/c2� < d ≤ nc for an appropriate
constant c2 > 0 and every constant integer c ≥ 1. The expected optimization
time of the (µ+1) EA, where µ ≥ d + 1, is bounded above by O(µnc+2).

7 Small Threshold Values of the Population Size

At first, we consider again the threshold value of the population size one only.
But here, the presented functions satisfy the desired properties. After these are
proven, we extend our observations up to threshold values of the population size
of �n/(c1 log n)�−1 for an appropriate constant c1 > 0. Our results for POnePn

do not satisfy the desired properties, since the probability to jump over the peak
is just O(1/n). We modify POnePn that such a situation occurs numerous
times. More precisely, our example functions consist of many peaks and paths
between them that are also called bridges. Together with elements leading to
the first peak these form the new path. The global optimum is again located
at the end of this path. Typically, the path is first entered in front of the first
peak and no shortcuts are taken. This means that never a peak and the bridge
located behind it are jumped over. Thus, with an overwhelming probability, at
least once a peak is produced before the global optimum is found. Similar to
the behavior on POnePn, the probability is exponentially small to leave a peak,
if the population consists of this peak only. But if there is at least one more
individual in the population, these elements search forward on the path and find
the next peak efficiently. This goes on until the global optimum is found.

At first, we define the peaks. Therefore, we divide an element x of length
n into �log n� + 1 disjoint blocks. Block j, 0 ≤ j ≤ �log n� − 1, encloses the
�n/(4 log n)� =: s bits xjs+1, . . . , x(j+1)s and the last block �log n� the remaining
bits x�log n�s+1, . . . , xn. With block j, 0 ≤ j ≤ �log n� − 1, we associate a bit

x(j) :=
{

xjs+1 if xjs+1 = · · · = x(j+1)s
undefined otherwise

.

Let a[i], 0 ≤ i ≤ 2�log n�−1, be the element where each a[i](j), 0 ≤ j ≤ �log n�−1,
is not undefined, furthermore G−1

�log n�(a[i](�log n�−1) · · · a[i](0)) = i and block
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1n

0n

a[0]

level of all x where ‖x‖ = r

↗ increasing fitness↓ increasing fitness

a[1]

a[2]

a[3]

a[2�log n�−3]a[2�log n�−2]a[2�log n�−1]

Fig. 2. An illustration of PLinPsn.

�log n� consists of ones only. Therefore, in exactly all bits of one block j, 0 ≤ j ≤
�log n�−1, the elements a[i] and a[i+1], 0 ≤ i < 2�log n�−1, differ. The bridge bet-
ween a[i] and a[i+1] consists of a[i,k] := a[i],1 · · · a[i],js+ka[i+1],js+k+1 · · · a[i+1],n,
0 < k < s. Finally, the elements a[−1,k] := 0n−k1k, 0 ≤ k < n − �log n�s, lead
from 0n to the first peak a[0]. We remark that the functions are influenced by
the long path functions of Rudolph (1997), but ours are short, of course.

S := (a[−1,0], . . . , a[−1,n−�log n�s−1], a[0], a[0,1], . . . , a[0,s−1], a[1], a[1,1], . . . ,
a[2�log n�−3,s−1], a[2�log n�−2], a[2�log n�−2,1], . . . , a[2�log n�−2,s−1],
a[2�log n�−1]) =: (s0, . . . , sn+s(2�log n�−�log n�−1))

describes the whole path. Now, we can give a complete definition of PLinPsn

(Path with Linear in n many Peaks) illustrated in Fig. 2.

PLinPsn(x) :=






n + s + i if x = si and x = a[j] for some j
n + i if x = si and x �= a[j] for every j
n − |x| otherwise

Theorem 7. The expected time until the (µ+1) EA, where µ ≥ 2, has optimized
PLinPsn is bounded above by O(µn3/ log n).

Proof. The proof is similar to that of Theorem 3 using Theorem 2. We choose
the partition induced by the areas

Ai :=
{ {a |PLinPsn(a) = i} if 1 ≤ i < n

{si−n} if n ≤ i ≤ 2n + s(2�log n� − �log n� − 1) .

Hence, it holds µ ≥ max{vj | j < 2n + s(2�log n� − �log n� − 1)} + 1 = 2 if

bi :=
{

i + 1 if i �= 2n − (�log n� + j)s for every j
i + s if i = 2n − (�log n� + j)s for some j

and 1 ≤ i < 2n + s(2�log n� − �log n� − 1). If we consider the areas Ai and Ai+1,
it holds p(Ai) ≥ 1/(en). So, by Theorem 2 the expected optimization time is
bounded above by µ

(
1 + (2n + s(2�log n� − �log n� − 1) − 1)en

)
= O(µn3/ log n).

�
We consider a technical lemma that summarizes one main property of PLinPsn.
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Lemma 8. For 0 ≤ i ≤ 2�log n�−1 and all c where PLinPsn(c) > PLinPsn(a[i])
it holds a) H(a[i], c) ≥ s and b) H(a[i−1,k], c) ≥ s for arbitrary k.

Proof. The element c can only be a[i+l], l ≥ 1, or a[i+l,j] for arbitrary j.
a) The elements a[i] and a[i+l] differ in all bits of at least one block. Therefore, it
is H(a[i], a[i+l]) ≥ s and since by construction of ai all bits in each block have the
same value, it holds H(a[i], a[i+l,j]) ≥ min{H(a[i], a[i+l]),H(a[i], a[i+l+1])} ≥ s.
b) Due to the situation described in a) it is H(a[i−1,k], a[i+l]) ≥ min{H(a[i−1],
a[i+l]),H(a[i], a[i+l])} ≥ s and it is H(a[i−1,k], a[i+l,j]) ≥ min{H(a[i−1,k], a[i+l]),
H(a[i−1,k], a[i+l+1]) ≥ min{ H(a[i−1], a[i+l]), H(a[i−1], a[i+l+1]), H(a[i], a[i+l]),
H(a[i], a[i+l+1])} ≥ s. �

Theorem 9. With a probability of 1 − 2−Ω(n) the (1+1) EA needs 2Ω(n) steps
to optimize PLinPsn.

Proof. When first an element of {sn−�log n�s = a[0], . . . , sn+s(2�log n�−�log n�−1)} is
produced this happens similar to the proof of Theorem 4 with an exponentially
small failure probability by a mutation of a[−1,n−�log n�s−k], k ≥ 1. We analyze
the situation that the population is a[−1,n−�log n�s−k], k ≥ 1, or a[i,s−k], i ≥ 0. By
Lemma 8 the probability is bounded by |S|(1/n)s = 2−Ω(n) to create an arbitrary
element c where PLinPsn(c) > PLinPsn(a[i+1]). Furthermore, again similar to
the proof of Theorem 4, the probability to create a[i+1,l] for an arbitrary l before
a[i+1] is bounded by O(1/n). If the population is a[i], 0 ≤ i < 2�log n� − 1,
by Lemma 8 the probability is exponentially small to create an element c �=
a[i] where PLinPsn(c) ≥ PLinPsn(a[i]). Hence, the probability to produce the
global optimum before an element a[i], 0 ≤ i < 2�log n� − 1, is bounded by
2−Ω(n) + O(1/n)2

�log n�−1 = 2−Ω(n). �
We consider threshold values of the population size of up to �n/(c1 log n)� − 1
for an appropriate constant c1 > 0. Therefore, we play with the definition of
PLinPsn. This is done similar to the changings of POnePn that led to PO-
nePn,d. We enlarge the peak. Let PLinPsn,d, 1 ≤ d < �n/(c1 log n)�, be the
variant of PLinPsn where beside a[i], 0 ≤ i < 2�log n� − 1, the elements a[i,k],
1 ≤ k < d, have f -value PLinPsn(a[i]). So, these elements form the new peaks.

The arguments that led to Theorems 5 and 7 bound the expected optimiza-
tion time for the (µ+1) EA on PLinPsn,d, if µ ≥ d + 1, by O(µn3/ log n).

The result of Theorem 9 also holds for the (µ+1) EA on PLinPsn,d, if
µ ≤ d and d < �n/(c1 log n)� for an appropriate constant c1 > 0. The path
is reached at its beginning. If the population consists only of elements of the
peak {a[i], a[i,1], . . . , a[i,d−1]}, 0 ≤ i < 2�log n� − 1, by Lemma 8 the probability
is exponentially small to create an element c �∈ {a[i], a[i,1], . . . , a[i,d−1]} where
PLinPsn,d(c) ≥ PLinPsn,d(a[i]), if c1 is large enough. Otherwise, let sk ∈ P but
sj �∈ P for all j > k. If sk = a[i,l], l ≥ d, similar to the arguments that led to Theo-
rems 5 and 9, the probability to produce an element of {a[i+1,d], . . . , a[i+1,s−1]}
before an element of {a[i+1], a[i+1,1], . . . , a[i+1,d−1]} is bounded by O(1/nd) =
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O(1/n). If sk = a[i] or sk = a[i,l], l < d, the failure probability is bounded by
2−Ω(n/ log n) = O(1/n) that after �2eµn2/(c1 log n)� steps the population consists
of elements of {a[i], a[i,1], . . . , a[i,d−1]} only. And the probability is also bounded
by O(1/n) that within these steps an element of {a[i+1], a[i+1,1], . . . , a[i+1,s−1]}
is created. Therefore and since for both situations of sk the probability is ex-
ponentially small to produce an arbitrary element c where PLinPsn,d(c) >
PLinPsn,d(a[i+1]), the probability to produce the global optimum before the
population consists only of some elements of some peak {a[i], a[i,1], . . . , a[i,d−1]},
0 ≤ i < 2�log n� − 1, is again bounded by 2−Ω(n) + O(1/n)2

�log n�−1 = 2−Ω(n).

Theorem 10. With a probability of 1−2−Ω(n) the (µ+1) EA, where µ ≤ d, needs
2Ω(n) steps to optimize PLinPsn,d, 1 ≤ d < �n/(c1 log n)� for an appropriate
constant c1 > 0. The expected optimization time of the (µ+1) EA, where µ ≥
d + 1, is bounded above by O(µn3/ log n).

Conclusions

We have proved that functions exist where a simple mutation-based EA is effi-
cient if the population size µ > d and is totally inefficient if µ ≤ d. This has been
proven rigorously by specifying some functions for all values of d polynomially
bounded in the dimension of the search space. These results form a typical so-
called hierarchy result. We have developed methods to analyze the investigated
EA. These help to upper bound the expected optimization time. The question
if the smallest possible increase of the population size may be advantageous has
been answered positively. However, in most cases of application such a sensitive
decrease of the population size does not have such enormous effects. But these
results support the importance of a correct choice of the population size.
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